Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks.

نویسندگان

  • Jason A Burdick
  • Cindy Chung
  • Xinqiao Jia
  • Mark A Randolph
  • Robert Langer
چکیده

Hyaluronic acid is a natural polysaccharide found abundantly throughout the body with many desirable properties for application as a biomaterial, including scaffolding for tissue engineering. In this work, hyaluronic acid with molecular weights ranging from 50 to 1100 kDa was modified with methacrylic anhydride and photopolymerized into networks with a wide range of physical properties. With macromer concentrations from 2 to 20 wt %, networks exhibited volumetric swelling ratios ranging from approximately 42 to 8, compressive moduli ranging from approximately 2 to over 100 kPa, and degradation times ranging from less than 1 day up to almost 38 days in the presence of 100 U/mL of hyaluronidase. When 3T3-fibroblasts were photoencapsulated in the hydrogels, cells remained viable with low macromer concentrations but decreased sequentially as the macromer concentration increased. Finally, auricular swine chondrocytes produced neocartilage when photoencapsulated in the hyaluronic acid networks. This work presents a next step toward the development of advanced in vivo curable biomaterials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative clinical assessment of two nasolabial hyaluronic acid fillers: A double-blind, randomized controlled trial

Background: Various fillers have been used for the correction of nasolabial folds. This study investigated the efficacy and safety assessment of two hyaluronic acid (HA) fillers on moderate nasolabial folds. Methods: This study randomized 10 volunteers, aged 35 to 49 years, with moderate nasolabial folds. Volunteers received injections of HA A and HA B gels into the right or left skin folds. Th...

متن کامل

Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds.

Ideally, rationally designed tissue engineering scaffolds promote natural wound healing and regeneration. Therefore, we sought to synthesize a biomimetic hydrogel specifically designed to promote tissue repair and chose hyaluronic acid (HA; also called hyaluronan) as our initial material. Hyaluronic acid is a naturally occurring polymer associated with various cellular processes involved in wou...

متن کامل

In Vitro Study of Hyaluronic Acid Based Scaffolds and Its Effect on Cartilage Regeneration

Recently, it has been proven that cartilage healing is difficult. The most commonly used treatments are autogenously cartilage grafting and allogeneic bone grafting, but grafts cannot fully meet treatment goals because of source, price, safety, and other concerns. Thus, a combination of biological materials and tissue engineering technology has become a recent trend in studies. Among the studie...

متن کامل

The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells.

The potential of mesenchymal stem cells (MSCs) as a viable cell source for cartilage repair hinges on the development of engineered scaffolds that support adequate cartilage tissue formation. Evolving networks (hydrogels with mesh sizes that change over time due to crosslink degradation) may provide the control needed to enhance overall tissue formation when compared to static scaffolds. In thi...

متن کامل

Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels.

Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g., cardiovascular, cartilage, neural). When us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomacromolecules

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2005